If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+63x-1380=0
a = 12; b = 63; c = -1380;
Δ = b2-4ac
Δ = 632-4·12·(-1380)
Δ = 70209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{70209}=\sqrt{9*7801}=\sqrt{9}*\sqrt{7801}=3\sqrt{7801}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-3\sqrt{7801}}{2*12}=\frac{-63-3\sqrt{7801}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+3\sqrt{7801}}{2*12}=\frac{-63+3\sqrt{7801}}{24} $
| X+3x+X-9=144 | | 13x+9=15x-11 | | -5(x=4)=79 | | 1/9(9t-9)=11/9t-t+9/18 | | 7n+4n-8n-3n-2n=30 | | 0.75(0.25x+8)-(0.5x+2)=3/8(4-x)-0.25x | | 240+0.15x-240=345-240 | | −3r+7=−1 | | 5j+17=12j+41 | | 5j-17=12j+41 | | 2x^2−12x+18=0 | | 5j+17=12j-41 | | -3(7-16x)=8x+9 | | 1/3x*3=7 | | 8(m-3)=4(m-1 | | 1/3(x/3)=7 | | 6y=42y= | | 230+0.25x-230=445-230 | | 7x+2=5x+10. | | 24x-30x-6+12x=81-54+6 | | 1=7x+9 | | 70/x=5 | | 2y^2-10y+8=8 | | -5/y+5=6 | | -2(4y-8)-y=-4(y-2) | | 0x+1-2*3/4=5 | | 0x+1-2*3/4=5+6-7*8/9 | | 0.001x^2+6.2x+60=0 | | 21w=14w-3w+100 | | 6(x+2)-(x-5)=24 | | 0x+1-2*3/4=5x+6-7*8/9 | | 5x-13-x=6x-8-2x |